10 research outputs found

    Molecular Characterization of Extended-Spectrum beta-Lactamase-Producing Escherichia coli and Clones Causing Extraintestinal Infections in Humans. Animals as Reservoir of High-Risk E. coli Clones Pathogenic for Humans

    Get PDF
    Escherichia coli is the leading cause of urinary tract and bloodstream infections in humans and animals. The treatment of these infections has been seriously complicated by the appearance of multidrug-resistant isolates and especially by the rapid dissemination of extended-spectrum betalactamase- producing E. coli (ESBLEC). The present doctoral thesis includes six studies in which we evaluated the prevalence, the phenotypic and the genotypic characteristics of sequence type 131 (ST131) strains and other high-risk clones among E. coli strains isolated from patients with extraintestinal infections. We also study animals (pigs and dogs) as reservoirs for ST131 strains and other high-risk clones

    Genomic characterization of prevalent mcr-1, mcr-4, and mcr-5 Escherichia coli within swine enteric colibacillosis in Spain

    Get PDF
    Antimicrobial agents are crucial for the treatment of many bacterial diseases in pigs, however, the massive use of critically important antibiotics such as colistin, fluoroquinolones and 3rd–4th-generation cephalosporins often selects for co-resistance. Based on a comprehensive characterization of 35 colistin-resistant Escherichia coli from swine enteric colibacillosis, belonging to prevalent Spanish lineages, the aims of the present study were to investigate the characteristics of E. coli clones successfully spread in swine and to assess the correlation of the in vitro results with in silico predictions from WGS data. The resistome analysis showed six different mcr variants: mcr-1.1; mcr-1.10; mcr-4.1; mcr-4.2; mcr-4.5; and mcr-5.1. Additionally, blaCTX–M–14, blaCTX–M–32 and blaSHV–12 genes were present in seven genomes. PlasmidFinder revealed that mcr-1.1 genes located mainly on IncHI2 and IncX4 types, and mcr-4 on ColE10-like plasmids. Twenty-eight genomes showed a gyrA S83L substitution, and 12 of those 28 harbored double-serine mutations gyrA S83L and parC S80I, correlating with in vitro quinolone-resistances. Notably, 16 of the 35 mcr-bearing genomes showed mutations in the PmrA (S39I) and PmrB (V161G) proteins. The summative presence of mechanisms, associated with high-level of resistance to quinolones/fluoroquinolones and colistin, could be conferring adaptive advantages to prevalent pig E. coli lineages, such as the ST10-A (CH11-24), as presumed for ST131. SerotypeFinder allowed the H-antigen identification of in vitro non-mobile (HNM) isolates, revealing that 15 of the 21 HNM E. coli analyzed were H39. Since the H39 is associated with the most prevalent O antigens worldwide within swine colibacillosis, such as O108 and O157, it would be probably playing a role in porcine colibacillosis to be considered as a valuable subunit antigen in the formulation of a broadly protective Enterotoxigenic E. coli (ETEC) vaccine. Our data show common features with other European countries in relation to a prevalent clonal group (CC10), serotypes (O108:H39, O138:H10, O139:H1, O141:H4), high plasmid content within the isolates and mcr location, which would support global alternatives to the use of antibiotics in pigs. Here, we report for first time a rare finding so far, which is the co-occurrence of double colistin-resistance mechanisms in a significant number of E. coli isolatesThis study was supported by projects PI16/01477 from Plan Estatal de I+D+I 2013–2016, Instituto de Salud Carlos III (ISCIII), Subdirección General de Evaluación y Fomento de la Investigación, and FEDER; AGL2016-79343-R from the Agencia Estatal de Investigación (AEI, Spain) and FEDER; ED431C 2017/57 from the Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia) and FEDER. IG-M and VG acknowledge the Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia for their pre-doctoral and post-doctoral grants (Grant Numbers ED481A-2015/149 and ED481B-2018/018, respectively). SF-S acknowledges the FPU programme from the Secretaría General de Universidades, Ministerio de Educación, Cultura y Deporte, Gobierno de España (Grant Number FPU15/02644)S

    Whole Genome Sequencing and Characteristics of mcr-1–Harboring Plasmids of Porcine Escherichia coli Isolates Belonging to the High-Risk Clone O25b:H4-ST131 Clade B

    Get PDF
    Porcine Escherichia coli ST131 isolates are scarcely documented. Here, whole genome sequencing and core genome (CG) and plasmidome analysis of seven isolates collected from diarrheic piglets and four from pork meat were performed. All of the 11 ST131 isolates belonged to serotype O25b:H4 and clade B and showed fimH22 allele or mutational derivatives. The 11 porcine isolates possessed virulence traits that classified the isolates as avian pathogenic, uropathogenic, and extraintestinal pathogenic E. coli–like (APEC-, UPEC-, and ExPEC-like) and constituted virotype D. The CG was performed for all porcine isolates in addition to 73 ST131 reference isolates from different origins. Within clade B, the CG showed nine subclusters, allowing us to describe five new subclades (B6, B6-like, B7, B8, and B9). There was an association between subclade B6, PST43, virotype D2, and food origin, whereas subclade B7 included PST9 isolates with virotype D5 from diarrheic piglets (p = 0.007). The distance between human and porcine isolates from subclades B6 and B7 had an average of 20 and 15 SNP/Mb, respectively. [F2:A-:B1]-IncF, ColE1-like, and IncX plasmids were the most prevalent. Besides, IncF plasmids harbored a ColV region frequent among APEC isolates. Antimicrobial resistance genes conferring resistance to penicillin, tetracycline, quinolones, and colistin were the most common. The mcr-1.1 gene was detected in 5 of 11 porcine isolates, integrated into the chromosome of one isolate and into plasmids in the remainder isolates (two MOBH11/IncHI2-ST4, one MOBP3/IncX4, and one MOBF12/IncF [F2:A-:B1] supposedly cointegrated with an IncHI2). The surrounding environments of the mcr-1 cassette showed variability. However, there were conserved structures within the same plasmid family. In conclusion, CG analysis defined five new subclades. The ST131 porcine isolates belonged to new subclades B6 and B7. Moreover, porcine and clinical human isolates were strongly related. The 11 porcine ST131 isolates harbored a wide variety of plasmids, virulence, and resistance genes. Furthermore, epidemic plasmids IncX4 and IncHI2 are responsible for the acquisition of mcr-1.1 gene. We hypothesize that the APEC-IncF plasmid acquired the mcr-1.1 gene via cointegrating an IncHI2 plasmid, which is worrying due to combination of virulence and resistance attributes in a single mobile genetic elementS-CF-S acknowledges the FPU programme for her grant (FPU15/02644) from the Secretaría General de Universidades, Spanish Ministerio de Educación, Cultura y Deporte. IG-M and VG acknowledge the Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia for his predoctoral grant (ED481A-2015/149) and her postdoctoral grant (ED481B2018/018), respectively. AM acknowledges the Ministerio de Educación, Cultura y Deporte (Spain) for the mobility grant PRX16/00023 for teachers and researchers from the Programa Estatal de Promoción del Talento y su Empleabilidad, Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016S

    High Prevalence of ST131 Subclades C2-H30Rx and C1-M27 Among Extended-Spectrum beta-Lactamase-Producing Escherichia coli Causing Human Extraintestinal Infections in Patients From Two Hospitals of Spain and France During 2015

    Get PDF
    The present study was carried out to evaluate the prevalence of sequence type 131 (ST131) among 188 extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) collected in 2015 in Lucus Augusti University hospital (Lugo, Spain) and AP-HP Beaujon hospital (Clichy, France) with regard to other STs and to characterize, the types of ESBL produced, serotypes, virulence factor (VF)-encoding genes and the ST131 clades and subclades. ST131 was detected in 33 (39.1%) and 46 (47.9%) of the isolates in Lucus Augusti and Beaujon, respectively. The 109 remaining isolates displayed 57 other STs, the following STs being displayed by at least three isolates: ST10 (8 isolates), ST23 (3), ST38 (4), ST58 (3), ST88 (5), ST95 (4), ST167 (3), ST354 (5), ST361 (3), ST410 (6), ST648 (4), ST744 (3), and ST1615 (6). ST354, ST410, and ST1615 were significantly (P < 0.05) more frequent in Lucus Augusti (5.4%, 6.5%, and 6.5%) than in Beaujon (0% for the three STs). The new globally emerging clone ST1193 among extraintestinal clinical ESBL-EC was identified in one isolate from France and one from Spain. CTX-M-15 was the commonest ESBL detected in the two hospitals (44.6% in Lucus Augusti and 50.0% in Beaujon). CTX-M-14 was significantly (P = 0.0003) more frequent in Lucus Augusti (31.5%) than in Beaujon (10.4%), whereas CTX-M-1 (20.8 vs. 7.6%; P = 0.008) and CTX-M-27 (15.6 vs. 6.5%; P = 0.0389) were more frequent in Beaujon than in Lucus Augusti. The ST131 isolates showed a higher virulence score (mean 13.367) compared with the non-ST131 isolates (mean 7.661) (P < 0.001). Among the 79 ST131 isolates, most of them (52; 65.8%) belonged to subclade C2 (also known as subclone H30Rx) followed by those belonging to subclade C1 (cluster C1-M27: 16 isolates, 20.3%; cluster non-C1-M27: 6 isolates, 7.6%) and clade A (4 isolates; 5.1%). The C2 subclade isolates showed a higher VF-encoding gene score (mean 14.250) compared with the C1-M27 cluster isolates (mean 10.875) (P < 0.001). In conclusion, this study highlights the epidemiological differences between the ESBL-EC isolated from two hospitals of France and Spain obtain in 2015 and reports, for the first time, the presence of clone ST1193 in Spain

    Clonal Structure, Virulence Factor-encoding Genes and Antibiotic Resistance of Escherichia coli, Causing Urinary Tract Infections and Other Extraintestinal Infections in Humans in Spain and France during 2016

    Get PDF
    Escherichia coli is the main pathogen responsible for extraintestinal infections. A total of 196 clinical E. coli consecutively isolated during 2016 in Spain (100 from Lucus Augusti hospital in Lugo) and France (96 from Beaujon hospital in Clichy) were characterized. Phylogroups, clonotypes, sequence types (STs), O:H serotypes, virulence factor (VF)-encoding genes and antibiotic resistance were determined. Approximately 10% of the infections were caused by ST131 isolates in both hospitals and approximately 60% of these infections were caused by isolates belonging to only 10 STs (ST10, ST12, ST58, ST69, ST73, ST88, ST95, ST127, ST131, ST141). ST88 isolates were frequent, especially in Spain, while ST141 isolates significantly predominated in France. The 23 ST131 isolates displayed four clonotypes: CH40-30, CH40-41, CH40-22 and CH40-298. Only 13 (6.6%) isolates were carriers of extended-spectrum beta-lactamase (ESBL) enzymes. However, 37.2% of the isolates were multidrug-resistant (MDR). Approximately 40% of the MDR isolates belonged to only four of the dominant clones (B2-CH40-30-ST131, B2-CH40-41-ST131, C-CH4-39-ST88 and D-CH35-27-ST69). Among the remaining MDR isolates, two isolates belonged to B2-CH14-64-ST1193, i.e., the new global emergent MDR clone. Moreover, a hybrid extraintestinal pathogenic E.coli (ExPEC)/enteroaggregative isolate belonging to the A-CH11-54-ST10 clone was identifiedThis study was supported by projects: PI16/01477 from Plan Estatal de I+D+I 2013-2016, Instituto de Salud Carlos III (ISCIII), Subdirección General de Evaluación y Fomento de la Investigación, Ministerio de Economía y Competitividad (Gobierno de España) and Fondo Europeo de Desarrollo Regional (FEDER); and ED431C2017/57 from the Consellería de Cultura, Educación e Ordenación Universitaria, (Xunta de Galicia) and FEDERS

    Association Between Kinetics of Early Biofilm Formation and Clonal Lineage in Escherichia coli

    Get PDF
    BackgroundEscherichia coli biofilm formation has mostly been assessed in specific pathogenic E. coli groups. Here, we assessed the early biofilm formation (EBF), i.e., adhesion stage, using the BioFilm Ring Test® on 394 E. coli clinical isolates (EC) [196 consecutively isolated (CEC) in 2016 and 198 ESBL-producing E. coli (ESBLEC) isolated in 2015]. Then, biofilm-forming ability was contrasted with phylogroups, clonotypes (fumC-fimH), and sequence types (STs), all being used to define clones, virulence factors (VF), and FimB.ResultAccording to both biofilm production levels at 2, 3, and 5 h, and EBF kinetics over 5 h, CEC and ESBLEC isolates segregated into three EBF groups: strong (G1), moderate (G2), and weak (G3) producers. At 2 h, strong producers were more frequent among CEC (n = 28; 14.3%) than among ESBLEC (n = 8; 4%) (P = 0.0004). As CEC and ESBLEC isolates showed similar individual EBF kinetics in each group, a comparison of isolate features between each group was applied to gathered CEC and ESBLEC isolates after 2 h of incubation, 2 h being the most representative time point of the CEC and ESBLEC isolate segregation into the three groups. Phylogroup B2 displayed by 51.3% of the 394 isolates was more frequent in G1 (77.8%) than in G3 (47.6%) (P = 0.0006). The 394 isolates displayed 153 clones, of which 31 included at least three isolates. B2-CH14-2-ST127, B2-CH40-22-ST131, B2-CH52-5/14-ST141, and E-CH100-96-ST362 clones were associated with G1 (P &lt; 0.03) and accounted for 41.7% of G1 isolates. B2-CH40-30-ST131 clone was associated with G3 (P &lt; 0.0001) and accounted for 25.5% of G3 isolates. VF mean was higher among G1 than among G3 isolates (P &lt; 0.001). FimB-P2 variant was associated with G1 (P = 0.0011) and FimB-P1 variant was associated with G3 (P = 0.0023). Clone, some VF, and FimB were associated with EBF, with clonal lineage being able to explain 72% of the variability of EBF.ConclusionAmong our 394 isolates, &lt;10% are able to quickly and persistently produce high biofilm levels over 5 h. These isolates belong to a few clones previously described in various studies as dominant gut colonizers in mammalians and birds and comprised the B2-CH40-22-ST131 clone, i.e., the ancestor of the globally disseminated B2-CH40-30-ST131 clone that is the dominant clone among the weak biofilm producers

    Sequence types, clonotypes, serotypes, and virotypes of extended-spectrum beta-lactamase-producing Escherichia coli causing bacteraemia in a Spanish hospital over a 12-year period (2000 to 2011)

    Get PDF
    The aim of the present study was to examine the prevalence and determine the molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) causing bacteraemia in a Spanish Hospital over a 12-year period (2000 to 2011). As far as we know, this is the first study which has investigated and compared the serotypes, phylogroups, clonotypes, virotypes, and PFGE profiles of ST131 and non-ST131 clones of bacteraemia ESBL-EC isolates. Of the 2,427 E. coli bloodstream isolates, 96 (4.0%) were positive for ESBL production: 40 for CTX-M-15, 36 for CTX-M-14, eight for CTX-M-1, four for CTX-M-9, CTX-M-32, and SHV-12. The number of ESBL-EC increased from 1.0% during 2000 to 2005 to 5.5% during 2006–2011 (P < 0.001). The 96 ESBL-EC isolates belonged to 36 different STs. The commonest was ST131 (41 isolates), followed by ST58, ST354, ST393 and ST405 (four isolates each). Most CTX-M-15 isolates (87.5%, 35/40) were ST131, whereas the 36 CTX-M-14 isolates belonged to 23 different STs and only 3 (8.3%) of them were ST131. The 35 ST131 CTX-M-15-producing isolates belonged to the H30Rx subclone and 29 of them showed the virotype A. A drastic change in ST131 virotypes happened in 2011 due to the emergence of the virotypes E (sat, papGII, cnf1, hlyA, and kpsMII-K5) and F (sat, papGII, and kpsMII-K5) which displaced virotype A (afa/draBC, afa operon FM955459, sat, and kpsMII-K2). Although the 96 ESBL-EC isolates showed 21 O serogroups and 17 H flagellar antigens, 39 belonged to serotype O25b:H4 (ST131 isolates). The second most prevalent serotype (O15:H1) was found to be associated with another important high-risk clone (ST393). In conclusion, the ST131 was the most frequent sequence type, being the H30Rx subclone responsible for the significant increase of ESBL-EC isolates since 2006. Here, we report two new virotypes (E and F) of the H30Rx subclone emerged in 2011. Future molecular studies are needed to understand the dynamics of expansion of this successful high-risk subclone in order to prevent its spread and establish the importance of the two new virotypesThis study was supported by the following projects: PI16/01477 from the Plan Estatal de I+D+I 2013-2016, Instituto de Salud Carlos III (ISCIII), Subdirección General de Evaluación y Fomento de la Investigación, and Fondo Europeo de Desarrollo Regional (FEDER); AGL2013-47852-R from the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER; AGL2016-79343-R from the Spanish Agencia Estatal de Investigación (AEI) and FEDER; and CN2012/303 and ED431C2017/57 from the Consellería de Cultura, Educación e Ordenación Universitaria, (Xunta de Galicia) and FEDERS

    High diversity and variability of pipolins among a wide range of pathogenic Escherichia coli strains

    No full text
    Self-synthesizing transposons are integrative mobile genetic elements (MGEs) that encode their own B-family DNA polymerase (PolB). Discovered a few years ago, they are proposed as key players in the evolution of several groups of DNA viruses and virus–host interaction machinery. Pipolins are the most recent addition to the group, are integrated in the genomes of bacteria from diverse phyla and also present as circular plasmids in mitochondria. Remarkably, pipolins-encoded PolBs are proficient DNA polymerases endowed with DNA priming capacity, hence the name, primer-independent PolB (piPolB). We have now surveyed the presence of pipolins in a collection of 2,238 human and animal pathogenic Escherichia coli strains and found that, although detected in only 25 positive isolates (1.1%), they are present in E. coli strains from a wide variety of pathotypes, serotypes, phylogenetic groups and sequence types. Overall, the pangenome of strains carrying pipolins is highly diverse, despite the fact that a considerable number of strains belong to only three clonal complexes (CC10, CC23 and CC32). Comparative analysis with a set of 67 additional pipolin-harboring genomes from GenBank database spanning strains from diverse origin, further confirmed these results. The genetic structure of pipolins shows great flexibility and variability, with the piPolB gene and the attachment sites being the only common features. Most pipolins contain one or more recombinases that would be involved in excision/integration of the element in the same conserved tRNA gene. This mobilization mechanism might explain the apparent incompatibility of pipolins with other integrative MGEs such as integrons. In addition, analysis of cophylogeny between pipolins and pipolin-harboring strains showed a lack of congruence between several pipolins and their host strains, in agreement with horizontal transfer between hosts. Overall, these results indicate that pipolins can serve as a vehicle for genetic transfer among circulating E. coli and possibly also among other pathogenic bacteria.This research was funded by the Spanish Ministry of Science, Innovation and Universities, Grant Number PGC2018-093723-A-I00 (AEI and FEDER, UE) to M.R.R., and by institutional grants from Fundación Ramón Areces and Banco de Santander to the Centro de Biología Molecular Severo Ochoa. LREC laboratory was supported by projects PI16/01477 from Plan Estatal de I + D + I 2013–2016, Instituto de Salud Carlos III (ISCIII), Subdirección General de Evaluación y Fomento de la Investigación, Ministerio de Economía y Competitividad (Gobierno de España) and Fondo Europeo de Desarrollo Regional (FEDER); and ED431C2017/57 from the Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia) and FEDER. S.-C. F.-S. was holder of a PhD fellowship (FPU15/02644) from the Secretaría General de Universidades, Spanish Ministerio de Educación, Cultura y Deporte.Peer reviewe

    Raccoons (Procyon lotor) in the Madrid region of Spain are carriers of antimicrobial-resistant Escherichia coli and enteropathogenic E. coli

    No full text
    The role of wildlife in the epidemiology of antimicrobial resistance is unclear. Raccoons in North America can carry a variety of enteric bacteria, with associated antimicrobial resistance, that could infect humans and livestock. The potential for raccoons to carry these bacteria in Europe, where they are an invasive species, has not been explored. Our objectives were to determine the prevalence of Escherichia coli with associated antimicrobial resistance in raccoons from the Madrid region of Spain and to determine whether they are carriers of potential human pathogens, including verotoxin-producing E. coli (VTEC) and enteropathogenic E. coli (EPEC). In total, we tested 237 E. coli isolates from the faeces of 83 euthanized raccoons for susceptibility to 14 antimicrobial agents and the presence of VTEC and EPEC. Antimicrobial resistance to at least one antimicrobial was detected in the faeces of 51% (42/83; 95% CI, 40.1–61.1) of the raccoons tested. A high percentage of raccoons carried, in their faeces, E. coli isolates resistant to ampicillin (33%), streptomycin (33%), tetracycline (30%), sulphafurazole (31%) and trimethoprim-sulphamethoxazole (23%). We detected one isolate of extended-spectrum β-lactamase-producing E. coli from the faeces of one raccoon. We detected VTEC in the faeces of one raccoon, and EPEC in the faeces of 12% (10/83) of the raccoons. Of the raccoons that carried EPEC in their faeces, 60% (6/10) carried EPEC isolates that exhibited characteristics associated with pathogenicity in humans. Raccoons in Madrid can carry pathogenic and antimicrobial-resistant E. coli in their faeces and may be a risk to public health because of their potential to contaminate food and the environment with their faeces.Comunidad de Madrid (Spain), PI16/01477 from Plan Estatal de I+D+I 2013-2016, Instituto de Salud Carlos III (ISCIII), Subdirección General de Evaluación y Fomento de la Investigación and Fondo Europeo de Desarrollo Regional (FEDER), and ED431C2017/57 from the Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia) and FEDER; Spanish Ministerio de Educación, Cultura y Deport
    corecore